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Exercise 5.4.17 If A is m× n of rank r, show that A

can be factored as A = PQ where P is m× r with r in-
dependent columns, and Q is r× n with r independent

rows. [Hint: Let UAV =

[
Ir 0
0 0

]
by Theorem 2.5.3,

and write U−1 =

[
U1 U2

U3 U4

]
and V−1 =

[
V1 V2

V3 V4

]
in

block form, where U1 and V1 are r× r.]

Exercise 5.4.18

a. Show that if A and B have independent columns,
so does AB.

b. Show that if A and B have independent rows, so
does AB.

Exercise 5.4.19 A matrix obtained from A by deleting
rows and columns is called a submatrix of A. If A has an
invertible k× k submatrix, show that rank A ≥ k. [Hint:
Show that row and column operations carry

A→
[

Ik P

0 Q

]
in block form.] Remark: It can be shown

that rank A is the largest integer r such that A has an in-
vertible r× r submatrix.

5.5 Similarity and Diagonalization

In Section 3.3 we studied diagonalization of a square matrix A, and found important applications (for
example to linear dynamical systems). We can now utilize the concepts of subspace, basis, and dimension
to clarify the diagonalization process, reveal some new results, and prove some theorems which could not
be demonstrated in Section 3.3.

Before proceeding, we introduce a notion that simplifies the discussion of diagonalization, and is used
throughout the book.

Similar Matrices

Definition 5.11 Similar Matrices

If A and B are n×n matrices, we say that A and B are similar, and write A∼ B, if B = P−1AP for
some invertible matrix P.

Note that A ∼ B if and only if B = QAQ−1 where Q is invertible (write P−1 = Q). The language of
similarity is used throughout linear algebra. For example, a matrix A is diagonalizable if and only if it is
similar to a diagonal matrix.

If A∼ B, then necessarily B∼ A. To see why, suppose that B = P−1AP. Then A = PBP−1 = Q−1BQ

where Q = P−1 is invertible. This proves the second of the following properties of similarity (the others
are left as an exercise):

1. A∼ A for all square matrices A.

2. If A∼ B, then B∼ A. (5.2)

3. If A∼ B and B∼ A, then A∼C.

These properties are often expressed by saying that the similarity relation∼ is an equivalence relation on
the set of n×n matrices. Here is an example showing how these properties are used.
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Example 5.5.1

If A is similar to B and either A or B is diagonalizable, show that the other is also diagonalizable.

Solution. We have A∼ B. Suppose that A is diagonalizable, say A∼ D where D is diagonal. Since
B∼ A by (2) of (5.2), we have B∼ A and A∼ D. Hence B∼ D by (3) of (5.2), so B is
diagonalizable too. An analogous argument works if we assume instead that B is diagonalizable.

Similarity is compatible with inverses, transposes, and powers:

If A∼ B then A−1 ∼ B−1, AT ∼ BT , and Ak ∼ Bk for all integers k ≥ 1.

The proofs are routine matrix computations using Theorem 3.3.1. Thus, for example, if A is diagonaliz-
able, so also are AT , A−1 (if it exists), and Ak (for each k ≥ 1). Indeed, if A ∼ D where D is a diagonal
matrix, we obtain AT ∼ DT , A−1 ∼ D−1, and Ak ∼ Dk, and each of the matrices DT , D−1, and Dk is
diagonal.

We pause to introduce a simple matrix function that will be referred to later.

Definition 5.12 Trace of a Matrix

The trace tr A of an n×n matrix A is defined to be the sum of the main diagonal elements of A.

In other words:
If A =

[
ai j

]
, then tr A = a11 +a22 + · · ·+ann.

It is evident that tr (A+B) = tr A+ tr B and that tr (cA) = c tr A holds for all n×n matrices A and B and
all scalars c. The following fact is more surprising.

Lemma 5.5.1

Let A and B be n×n matrices. Then tr (AB) = tr (BA).

Proof. Write A =
[
ai j

]
and B =

[
bi j

]
. For each i, the (i, i)-entry di of the matrix AB is given as follows:

di = ai1b1i +ai2b2i + · · ·+ainbni = ∑ j ai jb ji. Hence

tr (AB) = d1 +d2 + · · ·+dn = ∑
i

di = ∑
i

(

∑
j

ai jb ji

)

Similarly we have tr (BA) = ∑i(∑ j bi ja ji). Since these two double sums are the same, Lemma 5.5.1 is
proved.

As the name indicates, similar matrices share many properties, some of which are collected in the next
theorem for reference.
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Theorem 5.5.1

If A and B are similar n×n matrices, then A and B have the same determinant, rank, trace,
characteristic polynomial, and eigenvalues.

Proof. Let B = P−1AP for some invertible matrix P. Then we have

det B = det (P−1) det A det P = det A because det (P−1) = 1/ det P

Similarly, rank B = rank (P−1AP) = rank A by Corollary 5.4.3. Next Lemma 5.5.1 gives

tr (P−1AP) = tr
[
P−1(AP)

]
= tr

[
(AP)P−1]= tr A

As to the characteristic polynomial,

cB(x) = det (xI−B) = det{x(P−1IP)−P−1AP}
= det{P−1(xI−A)P}
= det (xI−A)

= cA(x)

Finally, this shows that A and B have the same eigenvalues because the eigenvalues of a matrix are the
roots of its characteristic polynomial.

Example 5.5.2

Sharing the five properties in Theorem 5.5.1 does not guarantee that two matrices are similar. The

matrices A =

[
1 1
0 1

]
and I =

[
1 0
0 1

]
have the same determinant, rank, trace, characteristic

polynomial, and eigenvalues, but they are not similar because P−1IP = I for any invertible matrix
P.

Diagonalization Revisited

Recall that a square matrix A is diagonalizable if there exists an invertible matrix P such that P−1AP = D

is a diagonal matrix, that is if A is similar to a diagonal matrix D. Unfortunately, not all matrices are

diagonalizable, for example

[
1 1
0 1

]
(see Example 3.3.10). Determining whether A is diagonalizable is

closely related to the eigenvalues and eigenvectors of A. Recall that a number λ is called an eigenvalue of
A if Ax = λx for some nonzero column x in Rn, and any such nonzero vector x is called an eigenvector of
A corresponding to λ (or simply a λ -eigenvector of A). The eigenvalues and eigenvectors of A are closely
related to the characteristic polynomial cA(x) of A, defined by

cA(x) = det (xI−A)

If A is n×n this is a polynomial of degree n, and its relationship to the eigenvalues is given in the following
theorem (a repeat of Theorem 3.3.2).
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Theorem 5.5.2

Let A be an n×n matrix.

1. The eigenvalues λ of A are the roots of the characteristic polynomial cA(x) of A.

2. The λ -eigenvectors x are the nonzero solutions to the homogeneous system

(λ I−A)x = 0

of linear equations with λ I−A as coefficient matrix.

Example 5.5.3

Show that the eigenvalues of a triangular matrix are the main diagonal entries.

Solution. Assume that A is triangular. Then the matrix xI−A is also triangular and has diagonal
entries (x−a11), (x−a22), . . . , (x−ann) where A =

[
ai j

]
. Hence Theorem 3.1.4 gives

cA(x) = (x−a11)(x−a22) · · ·(x−ann)

and the result follows because the eigenvalues are the roots of cA(x).

Theorem 3.3.4 asserts (in part) that an n× n matrix A is diagonalizable if and only if it has n eigen-
vectors x1, . . . , xn such that the matrix P =

[
x1 · · · xn

]
with the xi as columns is invertible. This is

equivalent to requiring that {x1, . . . , xn} is a basis of Rn consisting of eigenvectors of A. Hence we can
restate Theorem 3.3.4 as follows:

Theorem 5.5.3

Let A be an n×n matrix.

1. A is diagonalizable if and only if Rn has a basis {x1, x2, . . . , xn} consisting of eigenvectors
of A.

2. When this is the case, the matrix P =
[

x1 x2 · · · xn

]
is invertible and

P−1AP = diag (λ1, λ2, . . . , λn) where, for each i, λi is the eigenvalue of A corresponding to
xi.

The next result is a basic tool for determining when a matrix is diagonalizable. It reveals an important
connection between eigenvalues and linear independence: Eigenvectors corresponding to distinct eigen-
values are necessarily linearly independent.

Theorem 5.5.4

Let x1, x2, . . . , xk be eigenvectors corresponding to distinct eigenvalues λ1, λ2, . . . , λk of an n×n

matrix A. Then {x1, x2, . . . , xk} is a linearly independent set.
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Proof. We use induction on k. If k = 1, then {x1} is independent because x1 6= 0. In general, suppose
the theorem is true for some k ≥ 1. Given eigenvectors {x1, x2, . . . , xk+1}, suppose a linear combination
vanishes:

t1x1 + t2x2 + · · ·+ tk+1xk+1 = 0 (5.3)

We must show that each ti = 0. Left multiply (5.3) by A and use the fact that Axi = λixi to get

t1λ1x1 + t2λ2x2 + · · ·+ tk+1λk+1xk+1 = 0 (5.4)

If we multiply (5.3) by λ1 and subtract the result from (5.4), the first terms cancel and we obtain

t2(λ2−λ1)x2 + t3(λ3−λ1)x3 + · · ·+ tk+1(λk+1−λ1)xk+1 = 0

Since x2, x3, . . . , xk+1 correspond to distinct eigenvalues λ2, λ3, . . . , λk+1, the set {x2, x3, . . . , xk+1} is
independent by the induction hypothesis. Hence,

t2(λ2−λ1) = 0, t3(λ3−λ1) = 0, . . . , tk+1(λk+1−λ1) = 0

and so t2 = t3 = · · ·= tk+1 = 0 because the λi are distinct. Hence (5.3) becomes t1x1 = 0, which implies
that t1 = 0 because x1 6= 0. This is what we wanted.

Theorem 5.5.4 will be applied several times; we begin by using it to give a useful condition for when
a matrix is diagonalizable.

Theorem 5.5.5

If A is an n×n matrix with n distinct eigenvalues, then A is diagonalizable.

Proof. Choose one eigenvector for each of the n distinct eigenvalues. Then these eigenvectors are inde-
pendent by Theorem 5.5.4, and so are a basis of Rn by Theorem 5.2.7. Now use Theorem 5.5.3.

Example 5.5.4

Show that A =




1 0 0
1 2 3
−1 1 0


 is diagonalizable.

Solution. A routine computation shows that cA(x) = (x−1)(x−3)(x+1) and so has distinct
eigenvalues 1, 3, and −1. Hence Theorem 5.5.5 applies.

However, a matrix can have multiple eigenvalues as we saw in Section 3.3. To deal with this situation,
we prove an important lemma which formalizes a technique that is basic to diagonalization, and which
will be used three times below.
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Lemma 5.5.2

Let {x1, x2, . . . , xk} be a linearly independent set of eigenvectors of an n×n matrix A, extend it to
a basis {x1, x2, . . . , xk, . . . , xn} of Rn, and let

P =
[

x1 x2 · · · xn

]

be the (invertible) n×n matrix with the xi as its columns. If λ1, λ2, . . . , λk are the (not necessarily
distinct) eigenvalues of A corresponding to x1, x2, . . . , xk respectively, then P−1AP has block form

P−1AP =

[
diag (λ1, λ2, . . . , λk) B

0 A1

]

where B has size k× (n− k) and A1 has size (n− k)× (n− k).

Proof. If {e1, e2, . . . , en} is the standard basis of Rn, then

[
e1 e2 . . . en

]
= In = P−1P = P−1 [ x1 x2 · · · xn

]

=
[

P−1x1 P−1x2 · · · P−1xn

]

Comparing columns, we have P−1xi = ei for each 1≤ i≤ n. On the other hand, observe that

P−1AP = P−1A
[

x1 x2 · · · xn

]
=
[
(P−1A)x1 (P−1A)x2 · · · (P−1A)xn

]

Hence, if 1≤ i≤ k, column i of P−1AP is

(P−1A)xi = P−1(λixi) = λi(P
−1xi) = λiei

This describes the first k columns of P−1AP, and Lemma 5.5.2 follows.

Note that Lemma 5.5.2 (with k = n) shows that an n× n matrix A is diagonalizable if Rn has a basis of
eigenvectors of A, as in (1) of Theorem 5.5.3.

Definition 5.13 Eigenspace of a Matrix

If λ is an eigenvalue of an n×n matrix A, define the eigenspace of A corresponding to λ by

Eλ (A) = {x in Rn | Ax = λx}

This is a subspace of Rn and the eigenvectors corresponding to λ are just the nonzero vectors in Eλ (A). In
fact Eλ (A) is the null space of the matrix (λ I−A):

Eλ (A) = {x | (λ I−A)x = 0}= null (λ I−A)

Hence, by Theorem 5.4.2, the basic solutions of the homogeneous system (λ I−A)x = 0 given by the
gaussian algorithm form a basis for Eλ (A). In particular

dim Eλ (A) is the number of basic solutions x of (λ I−A)x = 0 (5.5)
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Now recall (Definition 3.7) that the multiplicity11 of an eigenvalue λ of A is the number of times λ occurs
as a root of the characteristic polynomial cA(x) of A. In other words, the multiplicity of λ is the largest
integer m≥ 1 such that

cA(x) = (x−λ )mg(x)

for some polynomial g(x). Because of (5.5), the assertion (without proof) in Theorem 3.3.5 can be stated
as follows: A square matrix is diagonalizable if and only if the multiplicity of each eigenvalue λ equals
dim [Eλ (A)]. We are going to prove this, and the proof requires the following result which is valid for any

square matrix, diagonalizable or not.

Lemma 5.5.3

Let λ be an eigenvalue of multiplicity m of a square matrix A. Then dim [Eλ (A)]≤ m.

Proof. Write dim [Eλ (A)] = d. It suffices to show that cA(x) = (x−λ )dg(x) for some polynomial g(x),
because m is the highest power of (x−λ ) that divides cA(x). To this end, let {x1, x2, . . . , xd} be a basis
of Eλ (A). Then Lemma 5.5.2 shows that an invertible n×n matrix P exists such that

P−1AP =

[
λ Id B

0 A1

]

in block form, where Id denotes the d × d identity matrix. Now write A′ = P−1AP and observe that
cA′(x) = cA(x) by Theorem 5.5.1. But Theorem 3.1.5 gives

cA(x) = cA′(x) = det (xIn−A′) = det

[
(x−λ )Id −B

0 xIn−d−A1

]

= det [(x−λ )Id] det [(xIn−d−A1)]

= (x−λ )dg(x)

where g(x) = cA1(x). This is what we wanted.

It is impossible to ignore the question when equality holds in Lemma 5.5.3 for each eigenvalue λ . It
turns out that this characterizes the diagonalizable n× n matrices A for which cA(x) factors completely

over R. By this we mean that cA(x) = (x− λ1)(x− λ2) · · ·(x− λn), where the λi are real numbers (not
necessarily distinct); in other words, every eigenvalue of A is real. This need not happen (consider A =[

0 −1
1 0

]
), and we investigate the general case below.

Theorem 5.5.6

The following are equivalent for a square matrix A for which cA(x) factors completely.

1. A is diagonalizable.

2. dim [Eλ (A)] equals the multiplicity of λ for every eigenvalue λ of the matrix A.

11This is often called the algebraic multiplicity of λ .
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Proof. Let A be n×n and let λ1, λ2, . . . , λk be the distinct eigenvalues of A. For each i, let mi denote the
multiplicity of λi and write di = dim

[
Eλi

(A)
]
. Then

cA(x) = (x−λ1)
m1(x−λ2)

m2 . . .(x−λk)
mk

so m1 + · · ·+mk = n because cA(x) has degree n. Moreover, di ≤ mi for each i by Lemma 5.5.3.

(1)⇒ (2). By (1), Rn has a basis of n eigenvectors of A, so let ti of them lie in Eλi
(A) for each i. Since

the subspace spanned by these ti eigenvectors has dimension ti, we have ti≤ di for each i by Theorem 5.2.4.
Hence

n = t1+ · · ·+ tk ≤ d1 + · · ·+dk ≤ m1 + · · ·+mk = n

It follows that d1+ · · ·+dk = m1+ · · ·+mk so, since di ≤ mi for each i, we must have di = mi. This is (2).

(2)⇒ (1). Let Bi denote a basis of Eλi
(A) for each i, and let B = B1∪· · ·∪Bk. Since each Bi contains

mi vectors by (2), and since the Bi are pairwise disjoint (the λi are distinct), it follows that B contains n

vectors. So it suffices to show that B is linearly independent (then B is a basis of Rn). Suppose a linear
combination of the vectors in B vanishes, and let yi denote the sum of all terms that come from Bi. Then yi

lies in Eλi
(A), so the nonzero yi are independent by Theorem 5.5.4 (as the λi are distinct). Since the sum

of the yi is zero, it follows that yi = 0 for each i. Hence all coefficients of terms in yi are zero (because Bi

is independent). Since this holds for each i, it shows that B is independent.

Example 5.5.5

If A =




5 8 16
4 1 8
−4 −4 −11


 and B =




2 1 1
2 1 −2
−1 0 −2


 show that A is diagonalizable but B is not.

Solution. We have cA(x) = (x+3)2(x−1) so the eigenvalues are λ1 =−3 and λ2 = 1. The
corresponding eigenspaces are Eλ1

(A) = span{x1, x2} and Eλ2
(A) = span{x3} where

x1 =



−1

1
0


 , x2 =



−2

0
1


 , x3 =




2
1
−1




as the reader can verify. Since {x1, x2} is independent, we have dim (Eλ1
(A)) = 2 which is the

multiplicity of λ1. Similarly, dim (Eλ2
(A)) = 1 equals the multiplicity of λ2. Hence A is

diagonalizable by Theorem 5.5.6, and a diagonalizing matrix is P =
[

x1 x2 x3
]
.

Turning to B, cB(x) = (x+1)2(x−3) so the eigenvalues are λ1 =−1 and λ2 = 3. The
corresponding eigenspaces are Eλ1

(B) = span{y1} and Eλ2
(B) = span{y2} where

y1 =



−1

2
1


 , y2 =




5
6
−1




Here dim (Eλ1
(B)) = 1 is smaller than the multiplicity of λ1, so the matrix B is not diagonalizable,

again by Theorem 5.5.6. The fact that dim (Eλ1
(B)) = 1 means that there is no possibility of

finding three linearly independent eigenvectors.
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Complex Eigenvalues

All the matrices we have considered have had real eigenvalues. But this need not be the case: The matrix

A =

[
0 −1
1 0

]
has characteristic polynomial cA(x) = x2 + 1 which has no real roots. Nonetheless, this

matrix is diagonalizable; the only difference is that we must use a larger set of scalars, the complex
numbers. The basic properties of these numbers are outlined in Appendix A.

Indeed, nearly everything we have done for real matrices can be done for complex matrices. The
methods are the same; the only difference is that the arithmetic is carried out with complex numbers rather
than real ones. For example, the gaussian algorithm works in exactly the same way to solve systems of
linear equations with complex coefficients, matrix multiplication is defined the same way, and the matrix
inversion algorithm works in the same way.

But the complex numbers are better than the real numbers in one respect: While there are polynomials
like x2 + 1 with real coefficients that have no real root, this problem does not arise with the complex
numbers: Every nonconstant polynomial with complex coefficients has a complex root, and hence factors
completely as a product of linear factors. This fact is known as the fundamental theorem of algebra.12

Example 5.5.6

Diagonalize the matrix A =

[
0 −1
1 0

]
.

Solution. The characteristic polynomial of A is

cA(x) = det (xI−A) = x2 +1 = (x− i)(x+ i)

where i2 =−1. Hence the eigenvalues are λ1 = i and λ2 =−i, with corresponding eigenvectors

x1 =

[
1
−i

]
and x2 =

[
1
i

]
. Hence A is diagonalizable by the complex version of Theorem 5.5.5,

and the complex version of Theorem 5.5.3 shows that P =
[

x1 x2
]
=

[
1 1
−i i

]
is invertible

and P−1AP =

[
λ1 0
0 λ2

]
=

[
i 0
0 −i

]
. Of course, this can be checked directly.

We shall return to complex linear algebra in Section 8.7.

12This was a famous open problem in 1799 when Gauss solved it at the age of 22 in his Ph.D. dissertation.
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Symmetric Matrices13

On the other hand, many of the applications of linear algebra involve a real matrix A and, while A will
have complex eigenvalues by the fundamental theorem of algebra, it is always of interest to know when
the eigenvalues are, in fact, real. While this can happen in a variety of ways, it turns out to hold whenever
A is symmetric. This important theorem will be used extensively later. Surprisingly, the theory of complex

eigenvalues can be used to prove this useful result about real eigenvalues.

Let z denote the conjugate of a complex number z. If A is a complex matrix, the conjugate matrix A

is defined to be the matrix obtained from A by conjugating every entry. Thus, if A =
[
zi j

]
, then A =

[
zi j

]
.

For example,

If A =

[
−i+2 5

i 3+4i

]
then A =

[
i+2 5
−i 3−4i

]

Recall that z+w = z+w and zw = z w hold for all complex numbers z and w. It follows that if A and B

are two complex matrices, then

A+B = A+B, AB = A B and λA = λ A

hold for all complex scalars λ . These facts are used in the proof of the following theorem.

Theorem 5.5.7

Let A be a symmetric real matrix. If λ is any complex eigenvalue of A, then λ is real.14

Proof. Observe that A = A because A is real. If λ is an eigenvalue of A, we show that λ is real by showing
that λ = λ . Let x be a (possibly complex) eigenvector corresponding to λ , so that x 6= 0 and Ax = λx.
Define c = xT x.

If we write x =




z1

z2
...

zn


 where the zi are complex numbers, we have

c = xT x = z1z1 + z2z2 + · · ·+ znzn = |z1|2 + |z2|2 + · · ·+ |zn|2

Thus c is a real number, and c > 0 because at least one of the zi 6= 0 (as x 6= 0). We show that λ = λ by
verifying that λc = λc. We have

λc = λ (xT x) = (λx)T x = (Ax)T x = xT AT x

At this point we use the hypothesis that A is symmetric and real. This means AT = A = A so we continue
the calculation:

13This discussion uses complex conjugation and absolute value. These topics are discussed in Appendix A.
14This theorem was first proved in 1829 by the great French mathematician Augustin Louis Cauchy (1789–1857).
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λc = xT AT x = xT (A x) = xT (Ax) = xT (λx)

= xT (λ x)

= λxT x

= λc

as required.

The technique in the proof of Theorem 5.5.7 will be used again when we return to complex linear algebra
in Section 8.7.

Example 5.5.7

Verify Theorem 5.5.7 for every real, symmetric 2×2 matrix A.

Solution. If A =

[
a b

b c

]
we have cA(x) = x2− (a+ c)x+(ac−b2), so the eigenvalues are given

by λ = 1
2 [(a+ c)±

√
(a+ c)2−4(ac−b2)]. But here

(a+ c)2−4(ac−b2) = (a− c)2 +4b2 ≥ 0

for any choice of a, b, and c. Hence, the eigenvalues are real numbers.

Exercises for 5.5

Exercise 5.5.1 By computing the trace, determinant,
and rank, show that A and B are not similar in each case.

a. A =

[
1 2
2 1

]
, B =

[
1 1
−1 1

]

b. A =

[
3 1
2 −1

]
, B =

[
1 1
2 1

]

c. A =

[
2 1
1 −1

]
, B =

[
3 0
1 −1

]

d. A =

[
3 1
−1 2

]
, B =

[
2 −1
3 2

]

e. A =




2 1 1
1 0 1
1 1 0


, B =




1 −2 1
−2 4 −2
−3 6 −3




f. A =




1 2 −3
1 −1 2
0 3 −5


, B =



−2 1 3

6 −3 −9
0 0 0




Exercise 5.5.2 Show that




1 2 −1 0
2 0 1 1
1 1 0 −1
4 3 0 0


 and




1 −1 3 0
−1 0 1 1

0 −1 4 1
5 −1 −1 −4


 are not similar.

Exercise 5.5.3 If A∼ B, show that:

AT ∼ BTa. A−1 ∼ B−1b.

rA∼ rB for r in Rc. An ∼ Bn for n≥ 1d.
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Exercise 5.5.4 In each case, decide whether the matrix
A is diagonalizable. If so, find P such that P−1AP is di-
agonal.




1 0 0
1 2 1
0 0 1


a.




3 0 6
0 −3 0
5 0 2


b.




3 1 6
2 1 0
−1 0 −3


c.




4 0 0
0 2 2
2 3 1


d.

Exercise 5.5.5 If A is invertible, show that AB is similar
to BA for all B.

Exercise 5.5.6 Show that the only matrix similar to a
scalar matrix A = rI, r in R, is A itself.

Exercise 5.5.7 Let λ be an eigenvalue of A with cor-
responding eigenvector x. If B = P−1AP is similar to A,
show that P−1x is an eigenvector of B corresponding to
λ .

Exercise 5.5.8 If A∼ B and A has any of the following
properties, show that B has the same property.

a. Idempotent, that is A2 = A.

b. Nilpotent, that is Ak = 0 for some k ≥ 1.

c. Invertible.

Exercise 5.5.9 Let A denote an n× n upper triangular
matrix.

a. If all the main diagonal entries of A are distinct,
show that A is diagonalizable.

b. If all the main diagonal entries of A are equal,
show that A is diagonalizable only if it is already

diagonal.

c. Show that




1 0 1
0 1 0
0 0 2


 is diagonalizable but that




1 1 0
0 1 0
0 0 2


 is not diagonalizable.

Exercise 5.5.10 Let A be a diagonalizable n×n matrix
with eigenvalues λ1, λ2, . . . , λn (including multiplici-
ties). Show that:

a. det A = λ1λ2 · · ·λn

b. tr A = λ1 +λ2 + · · ·+λn

Exercise 5.5.11 Given a polynomial p(x) = r0 + r1x+
· · ·+ rnxn and a square matrix A, the matrix p(A) =
r0I + r1A + · · ·+ rnAn is called the evaluation of p(x)
at A. Let B = P−1AP. Show that p(B) = P−1 p(A)P for
all polynomials p(x).

Exercise 5.5.12 Let P be an invertible n× n matrix. If
A is any n×n matrix, write TP(A) = P−1AP. Verify that:

TP(I) = Ia. TP(AB)= TP(A)TP(B)b.

TP(A + B) = TP(A) +
TP(B)

c. TP(rA) = rTP(A)d.

TP(A
k) = [TP(A)]

k for k ≥ 1e.

If A is invertible, TP(A
−1) = [TP(A)]

−1.f.

If Q is invertible, TQ[TP(A)] = TPQ(A).g.

Exercise 5.5.13

a. Show that two diagonalizable matrices are similar
if and only if they have the same eigenvalues with
the same multiplicities.

b. If A is diagonalizable, show that A∼ AT .

c. Show that A∼ AT if A =

[
1 1
0 1

]

Exercise 5.5.14 If A is 2× 2 and diagonalizable, show
that C(A) = {X | XA = AX} has dimension 2 or 4. [Hint:
If P−1AP = D, show that X is in C(A) if and only if
P−1XP is in C(D).]

Exercise 5.5.15 If A is diagonalizable and p(x) is a
polynomial such that p(λ ) = 0 for all eigenvalues λ of
A, show that p(A) = 0 (see Example 3.3.9). In particular,
show cA(A) = 0. [Remark: cA(A) = 0 for all square ma-
trices A—this is the Cayley-Hamilton theorem, see The-
orem 11.1.2.]

Exercise 5.5.16 Let A be n×n with n distinct real eigen-
values. If AC =CA, show that C is diagonalizable.



310 Vector Space Rn

Exercise 5.5.17 Let A =




0 a b

a 0 c

b c 0


 and

B =




c a b

a b c

b c a


.

a. Show that x3 − (a2 + b2 + c2)x− 2abc has real
roots by considering A.

b. Show that a2 + b2 + c2 ≥ ab+ ac+ bc by consid-
ering B.

Exercise 5.5.18 Assume the 2×2 matrix A is similar to
an upper triangular matrix. If tr A = 0 = tr A2, show that
A2 = 0.

Exercise 5.5.19 Show that A is similar to AT for all 2×2

matrices A. [Hint: Let A =

[
a b

c d

]
. If c = 0 treat the

cases b = 0 and b 6= 0 separately. If c 6= 0, reduce to the
case c = 1 using Exercise 5.5.12(d).]

Exercise 5.5.20 Refer to Section 3.4 on linear recur-
rences. Assume that the sequence x0, x1, x2, . . . satisfies

xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1

for all n≥ 0. Define

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
r0 r1 r2 · · · rk−1


 , Vn =




xn

xn+1

...
xn+k−1


 .

Then show that:

a. Vn = AnV0 for all n.

b. cA(x) = xk− rk−1xk−1−·· ·− r1x− r0

c. If λ is an eigenvalue of A, the eigenspace Eλ has
dimension 1, and x = (1, λ , λ 2, . . . , λ k−1)T is an
eigenvector. [Hint: Use cA(λ ) = 0 to show that
Eλ = Rx.]

d. A is diagonalizable if and only if the eigenvalues
of A are distinct. [Hint: See part (c) and Theo-
rem 5.5.4.]

e. If λ1, λ2, . . . , λk are distinct real eigenvalues,
there exist constants t1, t2, . . . , tk such that xn =
t1λ n

1 + · · ·+ tkλ n
k holds for all n. [Hint: If D is di-

agonal with λ1, λ2, . . . , λk as the main diagonal
entries, show that An = PDnP−1 has entries that are
linear combinations of λ n

1 , λ n
2 , . . . , λ n

k .]

Exercise 5.5.21 Suppose A is 2× 2 and A2 = 0. If
tr A 6= 0 show that A = 0.

5.6 Best Approximation and Least Squares

Often an exact solution to a problem in applied mathematics is difficult to obtain. However, it is usually
just as useful to find arbitrarily close approximations to a solution. In particular, finding “linear approx-
imations” is a potent technique in applied mathematics. One basic case is the situation where a system
of linear equations has no solution, and it is desirable to find a “best approximation” to a solution to the
system. In this section best approximations are defined and a method for finding them is described. The
result is then applied to “least squares” approximation of data.

Suppose A is an m×n matrix and b is a column in Rm, and consider the system

Ax = b

of m linear equations in n variables. This need not have a solution. However, given any column z ∈ Rn,
the distance ‖b−Az‖ is a measure of how far Az is from b. Hence it is natural to ask whether there is a
column z in Rn that is as close as possible to a solution in the sense that

‖b−Az‖


